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ABSTRACT
The evolution of aurally queryable melodic databases (so-
called query-by-humming systems) has reached a point where
retrieval accuracy is relatively high, even at large database
sizes. With this accuracy has come a decrease in retrieval
speed as methods have become more sophisticated and com-
putationally expensive. In this paper, we turn our attention
to heuristically culling songs from our database that are un-
likely given a sung query, in hopes that we can increase speed
by reducing the number of matching computations necessary
to reach the proper target song.
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1. INTRODUCTION
Over the past 10 years, a body of literature has accumu-

lated around the idea of an aurally queryable music database
[2]. More precisely, we wish to develop a database which
contains a listing of songs along with the musical notes that
compose each song. We then imagine that a user can sing
into a computer which, by some combination of signal pro-
cessing and a similarity function, retrieves the proper song
from the database based on the sung query.

Unfortunately, several issues within the problem make it a
non-trivial one. First, we must extract notes from a record-
ing of a person singing. This is difficult enough, but we are
also faced with the fact that singers will almost certainly not
sing the song perfectly. By the time we reach the matching
phase of the process we are given a string of notes that may
be riddled with insertion, deletion, and substitution errors.
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The attempts to get around this problem are many and
varied. Most are centered on generating a probabilistic score
between each target song in the database and the sung query,
and then using this to rank the targets. An approach [5] that
is currently en vogue is an HMM-based model. Although it
performs admirably, Dannenburg [1] reports that matching
a single target song against a sung query takes around two
seconds. With even a modestly sized database of 10,000
songs, this process would take over five and a half hours.

Intuitively, however, this “linear” form of matching seems
unnecessary. If we have a system of probabilistically match-
ing one song to another, we ought to be able not only to
match targets to queries, but also targets to targets, the
idea being a sort of transitivity in our matching scheme: If
a sung query is nothing like a given target t1, it is within
reason to assume that another target, t2, that is very similar
to t1 will likely not be a good match either.

Some work has been done along these lines using suf-

fix trees [6], but such an attempt is limited to those sys-
tems with string matching as their core algorithm, ignoring
HMM-based [5] and frame-based [4] alternatives that per-
form as well or better [1]. The next section attempts a more
general approach.

2. TREE-BASED MATCHING
We define a function P (x, y) which, given two sequences

of notes x and y, returns a number in the range (0, 1) which
increases as x and y are more similar. Let us suppose that
we have a set of such sequences, or songs, and call this set
S. We can divide this set into two subsets S1 and S2 by
finding the two least similar songs in S, d1 and d2. That is,

∃d1,d2∈S∀x,y∈SP (d1, d2) ≤ P (x, y)

Then, we can partition S into S1 and S2 as follows:

∀x∈SP (x, d1) > P (x, d2) ⇒ x ∈ S1

So that for a given song in S, it belongs to S1 if is more
similar to d1 than it is to d2, and similarly for S2. Obviously,
we can repeat this procedure recursively to form a tree. If
we limit the depth of this tree, the leaf nodes contain sets
of songs rather than individual songs.

Of course, this is not bound to work. It is based on the in-
tuition that a query will follow the same path down the tree
as a target if the two are similar enough, and that songs in
general have enough of a difference between them to support
such a discrimination. We would, however, like to introduce
a “forgiveness” factor so that weakly similar songs are not
lead down the wrong subtree. We do this both by limiting
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Figure 1: Success rate vs. database size at varying

tree depths.

the depth of the tree and by letting songs in S that are not
strongly biased to either d1 or d2 become members of both
S1 and S2. We define “strong bias” to mean a better than
average distance between P (x, d1) and P (x, d2). Formally,
we allow x membership in both S1 and S2 if and only if:

|P (x, d1) − P (x, d2)| <

∑
i
|P (d1, si) − P (d2, si)|

|S|

where si is the ith song in S. Also note that the vertical
bars denote cardinality for S and absolute value otherwise.

We are still at a loss to actually prove, however, that
a given query will follow the correct target to the proper
subtree. This we deal with empirically.

3. EXPERIMENTAL SETUP
To test the effectiveness of this method, we gathered about

550 queries over 12 different songs and 50 different singers,
most of whom could be described as “hobbyists” - singers
without classical training. Of these, 507 queries were deemed
reasonably accurate, which we defined to mean among the
top three matches on a small database of 18 songs. We
then constructed trees of various depths and database sizes
according to the method above

For our function P (x, y), we abandon the time consuming
HMM-based approach in favor of the simpler one presented
by Hu [3], with the exception that ours is note-based rather
than frame-based. Signal processing and note segmentation
was done largely with techniques outlined in [5].

4. RESULTS AND CONCLUSIONS
We plot the results in the two figures above. Figure 1

shows the probability of a query reaching the correct leaf
in the tree at several depths. For perspective, we have
also plotted the null hypothesis, the expected probability of
reaching the correct leaf had we chosen to simply eliminate
random targets from the database at each depth level.

We see that, even at depth level six, we still lead better
than 90% of all of our queries to the proper leaf in the tree.
Figure 2 shows that we are able to effectively ignore about
75% of the database at this depth level - that is, the size of
the sets at the leaves at depth six is about a quarter of the
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Figure 2: Leaf size vs. database size at varying tree

depths.

whole database. We again plot, for perspective, the number
of matching computations we would perform without the
tree-based solution.

But the real promise of the technique lies in its vast pos-
sibilities for modification: We have an obvious trade-off be-
tween the likelihood of being lead to the proper leaf node
and the number of songs at each leaf. There may be more
effective schemes for forgiveness, and these can be “plugged-
in” to the algorithm. In addition, we may similarly plug-in
any function P (x, y) to build the tree, any number of which
may yield better results than those shown here.

In summary, we have shown a basic tree-based method
for melodic retrieval, and that it can effectively cut down
the number of matching computations required to locate
the correct target song without a substantial reduction in
retrieval accuracy. In addition, we believe that the exten-
sibility of the method makes it a promising candidate for
future investigation.
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