
Examining Synthetic Databases in Melodic Retrieval Testing

Charles Parker
Department of Electrical Engineering and Computer Science, Oregon State University

parker@cs.orst.edu

Abstract

We investigate the practice of using probabilistically gen-
erated melodies to do large scale evaluations of query-by-
humming systems by running a set of sung queries against
both real and synthetic databases, using an already verified
type of “matching function” to map sung queries to the ap-
propriate target. We find that the accuracy of the generative
process can be improved by introducing a first-order Markov
assumption into the model, though neither method of melodic
generation is found to be a statistically consistant approxi-
mation of an actual database under our experimental condi-
tions.

1 Introduction

The statement of the so-called “query-by-humming” prob-
lem is straight-forward: Given a sung melodic query and a
database of songs, match the query to the correct song. Even
casual examination of this problem reveals that it contains
many non-trivial subproblems. A significant portion of these
problems stem from the fact in most approaches to the prob-
lem an event-based representation for both the sung query and
the target database is used. An event-based representation in
this context is one that parses a standard audio file (in WAV
format or the like) into discrete events, segmenting either by
amplitude or by change in pitch.

For a sung query, this is quite difficult. We must divide
the audio into frames and then use a pitch detection process
on each frame. After this phase is complete, we must group
frames of like pitch into notes. Both of these processes are
inexact even with the best of singers. Worse yet, poor singers
may render the melody incorrectly. The resulting sequence of
events, then, has little chance of being exactly the same as the
sequence composing the proper target song.

For a target song, the process of parsing discrete events is
much harder still. Because target songs (again, in WAV/MP3
format) usually have more than one instrument playing at
once, we have the problem of polyphonic transcription, which
has a body of literature in its own right. Even if we were able
to correctly parse the many events in a given polyphonic tar-
get, we would still have the issue of thematic extraction. This,
again, is a problem that is often studied on its own.

In an attempt to separate the first process (query transcrip-
tion) from the second (target transcription), a vast majority of
the current query-by-humming approaches make the simpli-
fying assumption that all targets in the database are in mono-
phonic MIDI format. This allows us to evaluate our matching
process separate from the process of transcribing the target
database. There have been recent calls for a more unified
approach (Dannenberg, Birmingham, Tzanetakis, Meek, Hu,
and Pardo 2003), but everyone agrees that there is room for
improvement in the simplified version of the problem, and
that a better solution would hasten the emergence of a better
solution to the more general problem.

Unfortunately, the simplifying assumption we have made
raises a new issue in terms of testing: Whereas we have an
abundance of target data in WAV/MP3 format (in the form of
CD audio and MP3 music files), there is a comparative lack
of data in monophonic MIDI form. When testing a query-
by-humming system, many implementations limit their tests
to databases of MIDI files that are small enough to be hand-
constructed (Rao and Raju 2002; Meek and Birmingham 2002)
- on the order of hundreds of songs - but most concede that
any realistic system will need to deal with a number of songs
in the tens of thousands.

To this end, recent work (Shifrin and Birmingham 2003;
Dannenberg et al. 2003) has used probabilistic melody gen-
eration in order to generate large test databases of MIDI data.
The implicit assertion here is that the retrieval characteristics
of a probabilistically generated database will be the same as
those of a real database of the same size. We will attempt to
provide a rough empirical evaluation of that assumption, and
then suggest a possible method for bringing such an assump-
tion closer to reality.

2 Song Representation

Each event, or note, in a song has two chief components:
A pitch and a duration. For query-by-humming purposes,
most implementations make the assumption that only relative
pitch and duration are significant. That is, we will not place a
restriction that a query start on a particular pitch or that it will
be sung at a particular tempo. We make only the assumption
that, once started, all relative changes in pitch and duration



will match relative changes of the correct target.
Hence, following most accurate representations (Shifrin

and Birmingham 2003; Pardo et al. 2004), we will repre-
sent both sung queries and target songs as a series of duples,
{(p1, d1), (p2, d2), . . .}, where pi represents the difference in
pitches between notes i and i − 1, and di represents the ra-
tio of the duration of note i to i − 1 More formally, if ei is
a note with frequency fei

and duration tei
, then in an n-note

sequence:

pi = fei
− fei−1

di =
tei

tei−1

Of course, frequency here is specified in the log domain
so that we are actually measuring difference in semitones on
the western even-tempered scale.

We will also make this representation a discrete-valued
one so that we can estimate the probabilities with ease later
on. The discretization for the p portion of the above duple
is obvious: We will use the number of half-tones (the inter-
val) that the difference in pitch represents, within one octave
on either side of the current pitch, and reserving an “out of
bounds” value for either end, resulting in 26 separate values.

The discretization of the d component of the duple is more
subtle. Work has been done to show that we can simply bin
the real values of duration in order to obtain discrete values
without too much of a sacrifice in performance, if we change
the values to be in the log domain, and use at least six bins
(Pardo and Birmingham 2002). We will select this represen-
tation as it is the most well-studied to date.

3 Melodic Generation

3.1 Probabilistic Generation

Now that we have discrete values for pitch and duration,
the obvious way to generate a random melody is to first gen-
erate a single random “reference” event, then to generate a
series of duples which represent the relative motion of the
rest of the events in the melody. We will make the common
assumption that duration and pitch are generated independent
of one another. The probability of generating a given inter-
val px can be estimated by simply counting the total number
of occurrences of px and dividing by the total number of in-
tervals in the database, with a similar process for estimating
probabilities over possible durations. Generating a melody is
a simple process of generating random numbers to obtain a
series of these duples.

At this point, anyone remotely acquainted with musical
composition will balk. Clearly, the process of composition
cannot be be reduced to (or even readily approximated by) a
model that generates random notes based on the probability

of their occurrence in other melodies. There are two ques-
tions here: First, can we improve this process so that it re-
flects a notion of composition that is even somewhat closer to
reality than the formulation above? Second, does this matter
at all to our overall goal of creating an artificial database of
targets with which we can model query-by-humming perfor-
mance on a database of real targets? We will deal with the
first question in the next section.

3.2 First-Order Markov Generation

To augment this process of probabilistic melody genera-
tion, we will introduce a first-order Markov assumption: In-
stead of assuming that all intervals and durations are gener-
ated independent of one another, we will now assume that
the every generated duple (pi, di) is probabilistically condi-
tioned on the previously generated duple (pi−1, di−1). We
can express this conditioning in the form of a very simple two
time-step dynamic Bayesian network as shown in figure 1.

pi−1 pi

di−1 di

Figure 1: A simple probabilistic model for generating
melodies.

Training the network is much same as was estimating the
probabilities in the simpler case. The difference here is that
we are estimating instead the conditional probability P (pi =
px|pi−1 = py, di−1 = dz). That is, we are estimating that
the current interval will be px given that the last duple gen-
erated was (py, dz) where this is a specific interval, dura-
tion value pair. Thus, we need to estimate the joint distri-
bution P (pi, pi−1, di−1). The training process, however, is
still a matter of simple counting. For a more in-depth look at
dynamic Bayesian networks, Markov models, and Bayesian
learning and inference, please consult Russell and Norvig
(2003).

Do we believe that our simple addition to the melodic gen-
eration process will have our system generating melodies that
are correct by any human standard of composition? Certainly
not. But we do believe that learning this more specific distri-
bution will help us produce songs that are more realistic than
the more simplistic case. Let us turn then, to evaluating these
systems empirically.



Event Probability
P (pi = +5) 0.051

P (pi = +5|pi−1 =null (pi is first)) 0.256
P (pi = +3) 0.065

P (pi = +3|pi−1 = +4) 0.284

Table 1: Frequencies of some events that change drastically
based on the previous event

4 Experimental Setup

To evaluate these methods, we construct a database of
150 sung queries over 40 singers and 12 songs. We then
use a common database of about 2000 songs to learn the
probabilities associated with each of our melody generators
above. The experiments are run by evaluating how many of
our queries give the highest score to the correct target using
a well known method of query-target matching described be-
low.

We start the database containing only the 12 correct target
songs, and then grow it in three different ways: Using each
of the two methods of melody generation above, and also by
gradually adding songs from the aforementioned 2000 song
“training” database. We will do each of the methods of ran-
dom melodic generation 10 times in order to minimize ran-
dom effects and also to estimate the statistical significance of
any differences in performance that we observe.

We expect, of course, that the number of queries match-
ing the correct target will decrease as we grow the database,
inserting new, possibly similar targets. If it decreases faster
for the “real” database than for the two generated ones, then
it means that the songs we are generating are not realistic
enough, and our matching process can tell the difference.

4.1 Target Database

The target database we will use is the Digital Tradition
database of American folk songs, which is often used in the
literature. The database contains mostly well known Amer-
ican/European folk tunes and is used many places in the lit-
erature (McNab et al. 2000). The subset of the database that
we will use is 2280 songs with an average length of about 50
notes per song.

A preliminary investigation of some probabilities seems
promising, as noted in table 1. We see that the interval of a
perfect fourth upward (+5 semitones) has a prior probability
of about 5%. However, when we look at only duples that are
the first of a song, this probability is raised five-fold. This
corresponds to the common practice of the dominant pickup
in western music, used in Auld Lang Syne, Wagner’s Wedding
March, and the theme from the last movement of Brahms’
Symphony no. 1, to name just a few songs.

The other probability shown is the probability of the mi-

0 500 1000 1500 2000 2500
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database Size

M
R

R

First−Order Markov Generation
Proabilistic Generation
Actual Database Performance

Figure 2: Mean reciprocal rank of all queries with increasing
database size.

nor third occurring in a song, which is 6.5% in general, but
four times that when preceeded by a major third. This corre-
sponds, of course, to the arpeggiation of a major chord. It is
these types of dependencies that will be detected by our new
model.

4.2 Query Database and Matching Scheme

The 150 queries we will use for evaluation are part of a
massive body of collected query data which consists of about
1200 queries. The subjects in these queries were chosen as
potential users of a query-by-humming system. They are typ-
ically competant singers but with no formal vocal training. In
these queries, the melody is correctly rendered, and would be
readily identifiable by a human listener.

The “matching function” we will use is the simple, event-
based one outlined by Dannenberg et al. (2003), which, ac-
cording to that work and others (Pardo et al. 2004), is the
fastest algorithm that performs at state of the art levels.

5 Results

The results are plotted in figures 2 and 3. Figure 2 plots
the mean reciprocal rank or MRR. This is a standard bench-
mark in TREC tests, and is again used often in the litera-
ture (Meek and Birmingham 2002; Pardo, Birmingham, and
Shifrin 2004). We also plot, in figure 3 the percentage of
queries which the correct target is ranked first out of all tar-
gets in the database - the ideal result.



0 500 1000 1500 2000 2500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Database Size

P
ro

b
a
b
ili

ty
 o

f 
Q

u
e
ry

 M
a
tc

h
in

g
 C

o
rr

e
ct

 T
a
rg

e
t

First Order Markov Generation
Probabilistic Generation
Actual Database Performance

Figure 3: Probability of a query returning the correct target
ranked first versus increasing database size.

We can see that, as we add songs in the database, the per-
formance of the queries decreases with all three methods of
melodic generation. However, we also see that the perfor-
mance against the real database decreases faster than with
either of the two generated databases. Furthermore, we see
that the first order Markov assumption is indeed able to elim-
inate some of this gap between random generation and real
composition.

Type Mean St. Dev.
Probabilistic Generation 0.755 0.010
First-Order Model Generation 0.728 0.012
Actual Database 0.685 —

Table 2: Statistics for the MRR at the largest database size

How significant are these differences? Table 2 sums up
the results for MRR at the largest database size considered.
We can use these statistics to perform the venerable t-test for
statistical significance. With the above statistics and a sample
size of 10 for each probabilistic method, we find that the t-test
yields P < 0.0001. Performing the one-value t-test for each
method against the actual database performance yields a sim-
ilarly small P value. This tells us that we can be over 99.99%
certain that the differences here are statistically significant.

6 Conclusions

We set out to test the assumption that probabilistically
generated melodies accurate enough to simulate the retrieval

characteristics of a real database. We have chosen a common
retrieval method and shown that, in this particular case, this
assumption is at least somewhat in error. However, introduc-
ing a simple first-order Markov assumption has helped us to
capture something sufficiently interesting to make it statisti-
cally more accurate than the simpler model, again using our
particular method of retrieval.

We must stress that these results are not by any means
comprehensive across different methods of retrieval. What
we have shown (and have intended all along to show) is that
it is distinctly possible that the use of probabilistically gen-
erated melodies for testing may or may not give results that
will not fully generalize to real databases of songs. This is a
facet of the work that merits consideration, especially in cases
where the validity of the work rests squarely on this assump-
tion of generality.

Finally, we may entertain the notion that because a first-
order Markov assumption appears to give us an increase in
accuracy, that a second-order assumption will do better, and
a third-order assumption better still. This would difficult to
test, given that the size of the probability table grows expo-
nentially with the order of the assumption. However, the use
of a regression trees or some other type of approximation may
be all that is needed.

References
Dannenberg, R. B., W. P. Birmingham, G. Tzanetakis, C. Meek,

N. Hu, and B. Pardo (2003). The musart testbed for query-by-
humming evaluation. In Proc. 4th International Symposium
on Music Information Retrieval.

McNab, R. J., L. A. Smith, I. H. Witten, and C. L. Henderson
(2000). Tune retrieval in the multimedia library. Multimedia
Tools and Applications 10(2/3), 113–132.

Meek, C. and W. Birmingham (2002). Johnny can’t sing: A com-
prehensive error model for sung music queries. In Proc. 3rd
International Symposium on Music Information Retrieval.

Pardo, B. and W. Birmingham (2002). Encoding timing informa-
tion for musical query matching. In Proc. 3rd International
Symposium on Music Information Retrieval.

Pardo, B., W. Birmingham, and J. Shifrin (2004). Name that tune:
A pilot study in finding a melody from a sung query. Journal
of the American Society for Information Science and Tech-
nology 55(4).

Rao, P. and M. A. Raju (2002). Building a melody retrieval sys-
tem. In National Conference on Communications, Bombay,
India.

Russell, S. and P. Norvig (2003). Artificial Intelligence: A Mod-
ern Approach (second ed.)., pp. 492–583. Prentice Hall.

Shifrin, J. and W. P. Birmingham (2003). Effectiveness of HMM-
based retrieval on large databases. In Proc. 4th International
Symposium on Music Information Retrieval.


