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ABSTRACT 

In the last 5-10 years, there have been several attempts at the cre- 
ation of a musical database that can be queried acoustically. The 
main problem hindering such efforts so far has been scalability. 
with limits of the frequently used three-character representation 
for melodic contour becoming apparent even at relatively small 
database sizes. Extending the contour representation to 24 semi- 
tone resolution would go a long way towards solving such prob- 
lems. but applying current string matching methods to a 24 charac- 
ter alphabet would prove difficult at hest, and human errors would 
be far more prevalent. Here we show that the vast majority of 
errors at this resolution, although more numerous, are quite pre- 
dictable using currentmethods of probahilisic modeling. This is 
evidence which we hope opens the door to more intelligent forms 
of note matching. 

1. INTRODUCTION 

Considering the steadily growing size of the literature on Query- 
by-Humming systems, an accepted case for their possible useful- 
ness seems to already have been made. The commercial applica- 
tions are obvious, from users trying to pick songs from their per- 
sonal music collection, to location of a panicular song title while 
in a noisy karaoke bar [I] Another application not often considered 
is in the realm of copyright law [2], where acoustically matching 
one song to another already copywritten song before publication 
could save millions in the cost of litigation. Perhaps the most ex- 
citing recent development in the field has been the incorporation of 
melodic contour information into the new MPEG-7 standard [3]. 

A survey of papers from the area will reveal a large number of 
complete implementations [1][41[51[61[71[81 with varying meth- 
ods and degrees of success. In spite of this proliferation of whole 
systems, there has been little research directed at the analysis of 
individual parts of the system. A paper by Downie [9] states that 
”the literature . . . is one of development, not evaluation.” This is 
in part because the various aspects of a Query-by Humming (QBH) 
system have their own literature, and are all quite well understood. 
Pitch extraction, string matching, and database retrieval have all 
existed for a number of years, and it seems that most of the work 
involved in building a QBH system is tying it all together. 

Unfortunately, the combination of several general algorithms 
for these problems produces results that are far too general. Most 
descriptions of QBH system implementations admit that the three 
character alphabet, which is described in the following section, 
is not descriptive enough to discriminate over a large number of 
songs [61[81. In fact, whole papers [IO] have presented evidence 
dismissing this alphabet as an unscalable method. The remaining 
question becomes how lo solve this problem. 

Attempts [Ill71 have been made to create a more scalable sys- 
tem by using rhythmic as well as pitch data to query the database. 

While this approach has shown some promise, is has been shown 
experimentally [ l  I ]  that, at least in humans, the predominant fac- 
tor in song recognition is melody. Even if rhythmic information 
does prove dependable, such QBH systems using both pitch and 
rhythm will still benefit from increased melodic resolution. It is in 
improving this resolution that our work begins. 

2. MELODIC REPRESENTATION 

Probably the most prevalent method [6][8][2] of melodic represen- 
tation in QBH systems today is that of the three character alphabet 
used to describe whether the next pitch in a sequence is of lower 
frequency, higher frequency, or the same frequency as the current 
one. For example, the first few notes of”’binkle, Twinkle” would 
be represented RURURDDRDRDRD where Rmeansthe next 
note is repeated, D means the next note is at a lower frequency, and 
U means the next note is at a higher frequency. 

In westem music, differences in frequency of less than one 
semitone on the even-tempered scale are ignored. A distance of 
one semitone on the even-tempered scale is defined as a difference 
in frequencies f l  and f2 where f, > f2 and: 

fi-h = 0.0561 
f l  

Often. this will be expressed as a function of the logarithms of 
fi and f2 in order to obtain a meausurement that will grow linearly 
with the number of semitones. For the purposes of this paper and 
our discussion of contour however, this definition of semitone will 
suffice. It will also suffice to use only the western even-tempered 
scale for this analysis, but an extension to other musical scales is 
clearly possilble. 

There has been much work done in psychoacoustics to demon- 
strate that melodic contour is the principle factor in the recollec- 
tion of songs. One of the most oft-sited papers is Dowling’s [IZ]. 
Readers of this paper trying to build a QBH system must breathe a 
sigh ofrelief. Looking for such general changes in pitch is a much 
less constraining enterprise than is picking out exact intervals, and 
human errors are so reduced that tracking can often be done to very 
lugh degree of accuracy. Indeed, several of the papers listed above 
saw tracking accuracies in the high 90 percentile range. 

Even in Dowling’s work, however, he goes on to demonstrate 
that such a scale is impractical, pointing out scalability as the main 
obstacle. He sees that on the three-step scale, ”Twinkle, Twinkle” 
above and the Andante from Haydn’s ”Surprise Symphony” are 
represented with almost exactly the same characters. He then pro- 
poses as a remedy a scale where the number of diatonic steps are 
indicated along with interval direction. It is also stated that ”with 
familiar melodies, exact interval sizes are precisely remembered, 
and in fact, that music students often reverse the process - using 
specific songs to help recall specific intervals. 
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Clearly, this demonstrates that song recognition is greatly en- 
hanced with the use of a richer alphabet, and that techniques us- 
ing a three character representation will have problems returning 
unique results even with small sample sets. The danger of using 
the full 24-character alphabet, however. lies in the proliferation 
of errors one might expect with increased resolution, which may 
even go so far as to make the task of matching the string com- 
pletely intractable [IO]. We will attempt to avoid such dangers by 
suggesting a form of matching that has probability theory rather 
than information theory at its core. This assumes, of course, that 
such errors are not totally (or even mostly) random, which we will 
determine experimentally. 

3. EXPERIMENT IN HUMMING QUERIES 

3.1. The Hypothesis 

We will attempt to show by experiment that hummed queries will 
be reasonably accurate in a 24-character alphabet, and that errors 
made are easily predicted. More specifically. we will show that the 
vast majority of mistakes made by subjects are mistakes within a 
semitone of the expected pitch. We also suspect that the presence 
of large interval jumps will cause a marked increase in errors. 

Here we will pause to define a few terms: 

A serrling error is the spurious insertion of a character of type U1 
or D1. 

An off-by-one error is the substitution of a incorrect character one 
semitone away from the expected character for the expected char- 
acter. 

A rrocable error is an error that is either a settling error or an off- 
by-one error. 

The logic behind the hypothesis comes largely from informal lis- 
tening and intuition, but was formalized in an experiment by Lind- 
say [I31 which found that even untrained singers were able to ne- 
gotiate large intervals with fair accuracy. It is further supposed 
that analysis of these errors will yield possible methods of pro- 
gramming QBH systems for more intelligent detection. 

3.2. The 24-Character Representation 

We will represent melodies to be sung with the full 24 semitone al- 
phabet. Each character has a digit component describing the num- 
ber of semitones of the jump, and a letter component, U or D de- 
scribing the direction of the jump. We will eliminate the character 
” R ,  which would represent the repeated note. Current methods of 
detecting repeated notes rely on the subject singing on the syllable 
”ta” or ”da”, which guarantee by the nature of the consonant at the 
outset of each note that a silence of roughly 60 ms will accom- 
pany its beginning. Eliminating this constraint will allow subjects 
to sing on any syllable that is comfortable. This is a relatively 
common practice among developed systems [ 5 ] .  

To give an example before moving on, the song ”Twinkle, 
Twinkle” from above would be represented as follows. 

lJ7CJ202D2DlD2DZ 

3.3. Data Collection 

We recorded a series of eight subjects, five male and three female. 
The subjects represented a range of ability, from completely un- 
trained to one who was quite well trained. Pains were taken to as- 
sure that the majority of subjects were in the target range of likely 
users of a finished system, that is, the novice singer with little to 
no training but a fair sense of pitch. Each one was asked to sing 
a major scale up and down, the first 12 pitchel; of ”Three Blind 
Mice”. and a series of three interval pattems. These five samples 
have the following representation in our notation: 

U2U2UlU2U2U2UlDlDZD2D2DlD2D2 ( I )  

D202U4D2D2U7D2DlU3D2Dl (2) 

U4U8D8D4U4U8D8D4 (3) 

U6U6D6D6U6U6D6D6 (4) 

U7U5D5D7U7U5D5D7 ( 5 )  
The subjects were recorded in a quiet environment on a Sony 

Minidisc Recorder with a high-quality Shure SM57 microphone. 
m e  pitches were played on the piano before each utterance to as- 
sure familiarity. Digital sampling was done at 44.1 khz and 16-bit 
resolution. To extract the pitches, we ran a version of Gold and 
Rahiner’s [ 141 venerable pitch extraction algorithm on successive 
overlapping frames of the data, tailored to smooth differences of 
less than a semitone. 

4. RESULTS 

4.1. Information Theoretical Analysis 

We will begin by analyzing our data according the Viterbi algo- 
rithm [IS] which produces two measures: The correct recognition 
rate is defined as ( N  - S - D ) / N  and the accuracy rate is de- 
fined as ( N  - D - l - S) IN  where N is the number of correct 
characters, D is the number of deletion emrs, I is the number of 
insertion errors, and S is the number of substitution errors. 

We first segment the data by processing results in ( 1 )  and (2) 
, which we will call set one, and processing separately for (3). 
(4), and (5 ) .  which we will call set two. Computing the errors 
in set one yields an accuracy of 80.00% and a correct recognition 
rate of 86.90%. which is comparable to other recent approaches 
using similar sample sets [16]. We then run the same analysis 
against set two. This gives an accuracy rate of -57.14% and a 
correct recognition rate of 20.41%. Such a drop in accuracy is 
most certainly supportive of the second part of our hypothesis. We 
now move to a different type of analysis to consider the errors. 

4.2. Bayaian  Analysis 

We now COnStNCt a simple Bayesian network to represent our 
dataset, shown in figure 1. For a detailed explanation of Bayesian 
networks. one can refer to the excellent text by Russell and Norvig 
1171. 

For the purposes of this explanation, however, one needs only 
know that Bayesian networks are a well established method of rep- 
resenting conditional probabilities. For example, we can ask this 
network the probability that a character is correct given that the 
character is measured to he a U6. We would notate this as follows: 

P(Error = NoErrorlMeasured := U6) (6) 

11 - 26 



(PreviousError 'I 

Fig. 1. A Bayesian Network Constructed Over the Collected Data 

The three "Error" nodes in the network can take one of the 
following values: 

{NoError, Insertion, Deletion, Substitution} 

The "PreviousError" node can also take Beginning as a value 
if the character is the first in a sequence. Similiarly. the "Tracable" 
node can take any of the following four values: 

{Of fByOne,  Settling, Other, None} 
The two remaining nodes take the values of the 24-character 

alphabet. The "Measured node represents the value of the pitch 
detected, whereas the "Actual" node represents the pitch we ex- 
pected to detect at the same character. If they match. "Error" = 
NoError and "Tracable" = None.  If they are one semitone apart. 
"Error" = Substitution and "Tracable" = OffByOne.  

Commercially available Bayesian network tools such as Net- 
ica [I81 allow us to input a dataset, set evidence on any of these 
nodes, and then observe another node to note how probabilities 
change. For example, to query the network about the value in (6). 
we simply set the "Measured' node to U6 and observe the proba- 
bility of the outcome N O E T ~ W  on the "Error" node. 

We do the analysis twice, first on set one alone, and second on 
sets one and two combined. The following conditional probabili- 
ties are measured The probability of the error being tracable given 
that the note is an insertion error, the probability that the note is an 
insertion error given that it is a UI or DI. and the probability an 
error is tracable given that the note is a substitution error. For ref- 
erence, we also include the probability that any note is an insertion 
error given no other evidence. The results are summarized in table 
I and are conclusive with regards to the hypothesis. 

We see that roughly 80% of substitution errors and 85% of in- 
sertion errors appear to he of the tracahle types. We also see that 
insertion errors, as expected, a e  far more prevalent in the com- 
bined analysis (with the presence of large intervals) than in the 
analysis of set one alone. Another interesting note is that a//  of the 
insertion errors in set one were within one semitone. This suggests 
that not only do smaller interval sizes promote accuracy, hut they 
also shorten the distance of the errors made. The statistic showing 
that, over both datasets, simply measuring a character to he U1 

I1 - 

indicates a better than 75% chance that it will be an insertion error 
is a bit of a Trojan horse, as there were no U1 or Dl characters 
expected in set two. and so all of them will naturally be erroneous. 
In set one however, there were five such characters expected for 
each subject, and so the measurement is a more legitimate one. 

43. A Simple Application 

Armed with the knowledge gained from the model, we return to 
set one, which is most like the queries whtch will ostensibly he fed 
into a QBH system (in terms of the nature of the queries with re- 
gard to interval size). Since it appears that the U1 and D1 charac- 
ters form a disproportionately large number of errors in the string, 
we will simply post-process the query strings and delete all occu- 
rances of U1 and D1, doing the same to the two strings against 
which we are matchmg, producing the following: 

U2U2UZU2U2D2D2D2D2D2 
D2D2U4D2D2U7D2U3D2 

We recompute the accuracy and correct recognition rates and 
obtain 87.27% for both measures. Thus, even by using thts data in 
a very primative fashion, we see an appreciable increase in accu- 
racy. Perhaps even more notable is the fact that all insertion errors 
have been eliminated. We wish to stress at this point, however, that 
the true power of this model does not lie in this application, hut in 
an application of a more advanced variety as described below. 

5. CONCLUSIONS AND FUTURE WORK 

This research seems to indicate that generally, a semitone reso- 
lution is too much to demand of a human singer. Certainly, the 
evidence supparts this claim, but one could also read the research 
as indicating that a three, five or even seven character resolution 
is far too /ink to demand of a human singer. However, since the 
U1 and D1 characters are so close together, and so close to the 
boundty between up and down, it seems that settling errors could 
wreak havoc on alphabets of any size. By considering all 24 char- 
acters within a two octave range, however, we can ''see the whole 
picture" so to speak, get rid of spurious insertions, and reduce to a 
coarser alphabet if need be. 

But this is again ignoring the primary thrust of the research. 
It is the Bayesian analysis itself that can be applied to any candi- 
date algorithm to identify weaknesses and regularity in errors. The 
simple table in this paper barely scraches the surface of interesting 
relationships between interval and correctness the model helped 
us to discover. One of the most remarkable was that, given a sub- 
stitution error, there was a better than 50% chance the next note 
would he an insertion error, corresponding to the case where the 
singer jumps to a new pitch, quickly realizes his error, and corrects 
by moving up or down. Another was that the overall probability 
of an incorrect value jumped more than 20% on the first note of 
the utterance, which one might expect just as a subject begins to 
sing. Thirdly, although the evidence has shown that the original 
hypothesis was correct, we did not consider extending the hypoth- 
esis until we viewed the processed data. Tracing all errors within 
2 semitones (i.e., substitutions of +2 or -2 and insertions of U 2  
or 0 2  as well as the one-semitone errors) gives us a tracability of 
up over 95% for both measures. Increasing this yet again to three 
semitones yields 100% tracability: There were no substitution or 
insertion errors of more than three semitones. With the informa- 
tion that, given a character, there are only 6 possible substitutions 
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Probability Query Set One Results 
1.00 

P(Tracab1e = O f f B y O n e l E r r a r  = Substitution) 0.882 
P(Error = InsertionlMeosured = U1) 0.361 

0.097 
P(Errar = Inser t ion)  0.048 

P(TrauLb1e = Settl inglErrur = Inser t ion)  

P(Error = InsertionlMeasured = D1) 

Table 1. Results Obtained from Queries to the Network of Figure 1 

Combined Results 
0.845 
0.800 
0.754 
0.509 
0.169 

out of 24 that have a reasonable chance of occuring, we begin to 
see the usefulness of this techinique. 

Many of the current methods for database matching with the 
three character alphabet are standard dynamic programming a p  
proaches such as n-gram, longerr common substring, and longesr 
common subsequence (The reader is encouraged to consult [2] for 
a brief but solid discussion of each). While such techniques are 
feasible for a small alphabet, they are not efficient enough to han- 
dle the large alphabet. In the absence of a large alphabet matching 
technique, we can look to very successful probabilistic models be- 
ing used in speech recognition and production as possible inspira- 
tion. Given the success that our model has shown in producing dis- 
cernable trends in the production of errors, we are cerlain that any 
comprehensive system for contour recognition would do equally 
well to utilize a probilistic model. 

Of course, for the model to be comprehensive. it must be aug- 
mented and tested further. Certainly the largest weakness of the 
model is the small amount of data, and more must he obtained. 
We must also explore the possibility of other probabilistic depen- 
dancies. For example, preliminary data indicates that the length of 
the pitch to be sung drastically effects the probability of its being 
sung correctly. In addition, it does not escape us that the optimal 
model would probably have both ”Actual” and ”Measured“ con- 
nected to the error node, producing a full table of the likehood of 
m y  memured pitch given the expected pitch. We also must ob- 
tain prior probabilites over note values, a task which has already 
been accomplished in [ I ]  and [71. Efforts to refine the model and 
actually employ it for string matching are currently underway. 

In summary, we have shown quite conclusively that errors in 
humming queries arc highly regular, highly dependent on inter- 
val size, and that error trends can be accurately detected with a 
Bayesian network. We have also ma& a case for the use of a 
Bayesian network as part of the matching aspect of a QBH system. 
Given these observable trends in the nature of produced errors, it 
is clear that higher resolutions of melodic representation arc pos- 
sible in QBH systems, but only if more intelligent forms of error 
detection and correction such as this are employed. 
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