Learning From Demonstrations via Structured Prediction

Charles Parker, Prasad Tadepalli, Weng-Keen Wong, Thomas ietterich, and Alan Fern
Oregon State University
School of Electrical Engineering and Computer Science
Corvallis, OR 97333
{parker,tadepall,wong,tgd,aféi@eecs.oregonstate.edu

Abstract This presents us with a problem, however, when we are
faced with a world state not seen in the demonstration plans.

Demonstrations from a teacher are invaluable to an - .
y In this case, the student has no notion of how to proceed

student trying to learn a given behavior. Used correctly,

demonstrations can speed up both human and machine and can do no better than to act randomly. Clever, feature-
learning by orders of magnitude. An important ques- based representations of the value function allow gerzarali
tion, then, is how best to extract the knowledge encoded tion over the state space, but we are still learning the ebjec
by the teacher in these demonstrations. In this paper, we tive functionindirectly. That is, the above approach learns a
present a method of learning from demonstrations that value function over the entire state space and then attempts
leverages some of the structured prediction techniques to maximize the value of constructed path.

currently under investigation in the literature. We re- As an alternative approach, we propose direct, discrimina-

port encouraging results in Wargus, a real-time strategy tive learning of this function. Rather than ask the question

game. “What is the value of each state in the state space” we will
. ask, essentially, “What separates ‘good’ states from ‘bad’
Introduction ones?”. Recent work in structured prediction has given us a
Humans learn to interact with the world in a variety of com- framework to do exactly this.
plex ways. One of these wayslearning by demonstration In the next section we describe this work and relate it to

In this paradigm, a “teacher” presents a “student” with mpla our approach. We later derive our gradient boosting method
to accomplish a given goal, usually formalized in machine and give experimental results in a sub-domain of Wargus,
learning literature as a sequence of actions. The studant ca a real-time strategy game. The results show that our system
then generalize the world state to which the demonstrated learns to plan effectively from a small number of demonstra-
plan applies to other states where the plan may also apply. tions even when there are many irrelevant features.
Often, the demonstration plan is one of an exponential
number of plans that may satisfy a given goal set, and in Related Work
many domains (such as routing and scheduling), satisfy- tpis \ork is related to three threads of work in machine
ing the goals of planning may be almost trivial. The higher earming. One isstructured prediction(Taskar 2004), and
ach_levement then, is to find a plan that satisfies the goal set particularly the work on cutting-plane methods as seen in
optimally, or at least much better than the average, rangoml (154 chantaridist al.2004) and in (Parker, Fern, & Tadepalli
drawn, goal-satisfying plan. Implicit in the above deserip 2006). In the vocabulary of supervised, multi-class leagni
tion is the notion that the demonstrated plan is one such “op- his work focuses on problems where there are an exponen-
timal” or “much better than average” plan. . ftially large number of negative classes for each training ex
In the reinforcement learning literature, the student-typi ample. The approach is essentially to choose one of the best

callly Ieaéns through _expr)1loratiolr&. Thg sthudent is aIIovvfeﬂ 0 misclassifications for each positive example, and to update
take random actions in the world, and whenever one of these 1o mdel so that the correct class is chosen over this mis-

actions is taken, a reward is given. Over the course of many |5sification. In this way, problems having exponentially
thousands of random actions, it becomes clear to the student|arge numbers of classes can be solved efficiently.

which actions and world states generate the most reward. The second strand is inverse reinforcement learning (Ng

The best sequence to accomplish the given goal, then, be- g p,5sell 2000). Here we assume that the demonstrated be-
comes the sequence of actions that takes the student through, 4 ior is the result of optimally solving a Markov Decision

the sequence of world states with the highest reward. In pcess (MDP). The task is to learn the unknown reward or

‘t‘hlhs se_ttm,g,r:earnlgg by demort;strat]:ohr] ghwd(_el_s explonatbyah cost function of the MDP from the demonstrated trajectories
SI' owing” t r? stu Znt aa_num errc]) '% -utl 'ay states, us ot its optimal solution. One approach to this problem s to as
eliminating the need to discover them by random action. gme that all the other trajectories to be suboptimal andlea

Copyright(© 2007, Association for the Advancement of Artificial ~ reward functions which maximally distinguish the optimal
Intelligence (www.aaai.org). All rights reserved. trajectories from the suboptimal ones. Since the number of

suboptimal solutions is exponential in the size of relevant
parameters, this problem is similar to the structured predi
tion task and is tackled by a similar iterative constraimi-ge
eration approach. In each iteration, the MDP is solved opti-
mally for the current reward function, and if the optimal so-
lution generates a trajectory different from the demonstia
trajectory, it is used to train the next version of the reward
function which maximally separates the optimal trajecto-
ries from the suboptimal trajectories (Abbeel & Ng 2004;
Ratliff, Bagnell, & Zinkevich 2006).

The task we study in this paper is more naturally for-

s;, With optimal actior;. Specifically, suppose that € A
is the best non-optimal action given the current weights:

1)

d; = argmax (w - U(s;, a))
a€A,a#a;

Our weights, then, must be engineered so thatsfor
(W W(si,di)) < (w-U(si,ai)))

for all demonstration$s;, a;} € 7.
Itis possible that there are zero or infinitely many choices

mulated as learning to act from demonstrations (Khardon for w that accomplish this goal. We will then attempt to

1999). Unlike inverse reinforcement learning that tries to
learn the reward function, thus indirectly defining an otim
policy, here we directly seek to distinguish good statésact
pairs from bad state-action pairs. Each state-action pair i

described by a feature vector, and the optimal state-action
pairs are assumed to maximize a weighted sum of its fea-

tures. Thus, learning the weights of this optimizing fuonti
is sufficient to generate optimal behavior. Unlike in ineers

reinforcement learning, the weights need not correspond to
reward values. They merely need to distinguish good actions

from bad actions as well as possible.

Gradient Boosting for Plan Optimization

Our problem can be formulated as a four-tupfe A, 7, R},
whereS is a set of possible world states,is a set of possi-
ble actions, and? is a reward function such thdt : s €

S xa € A — R gives the reward for taking actiom

in states. 7 is our training set of demonstrations, com-
posed of pairs of the fornfis, a} wheres is a world state
anda is the optimal (or near-optimal) action to take given
this state. Our ultimate goal, then, is to build a functjpn

that chooses the correct action for any given state, so that

f(s) = argmax,c 4 R(s € S,a). To build f, we will rely

on the techniques of structured prediction as stated above.
particular, we use a gradient boosting technique first used i
(Dietterich, Ashenfelter, & Bulatov 2004) and later apdlie
to structured prediction in (Parker, Fern, & Tadepalli 2D06

Our approach proceeds as follows: We are given a set

of “demonstrations” that take the world from one state to
another in a way that is optimal or near-optimal. We then
attempt to iteratively learn a parameterized linear florcti

that correctly discriminates the optimal demonstration ac
tion from one drawn at random. In each iteration, we select,
from a group of random actions, the best “alternative” to
each demonstration action given the current function. 8ase

on the demonstrations and the alternatives (that we hope to
avoid), we compute a gradient at each parameter and take

a step in this direction, ideally away from the alternatives
and toward the demonstrations. Furthermore, the gradient i
margin-basedo that demonstrations that are already highly
ranked against their alternatives receive less attenkian t
ones that are not as highly ranked.

To formalize this, we first define the functidn(s, a) ex-
tracts gjoint feature vectothat may depend o#, a, and/or
the state of the world that results from the execution of
s. We seek a set of weightg that gives a higher value to the
demonstration action than to all other actions, given thtest

find aw that minimizes some notion of loss and maximizes
a notion of margin. Our margin at each training example
{si,a;} € T is clearly

(W U(si,a;)) — (w-U(s,d;)) 3)

We use a margin-based based loss function defined in pre-
vious work (Friedman, Hastie, & Tibshirani 200®)g(1 +
exp(—m)), wherem is the margin. The cumulative lods
over the training set is

L= Z log[1 + exp((w - W(si, di)) — (W - W(si,ai)))] (4)

(3

If there aren features in¥(s,a), and¥,(s,a) gives the
value of thejth feature, we note that

(w-U(s,a)) = ijkllj(s, a) (5)
J
Define the following notation for convenience:
Waj(si) = W (si,di) — V;(si,a;) (6)

Finally, suppose our current cost functions. The gra-
dient for the loss expression can be derived at each feature
in the representation as follows:

oL
~9Y,(s,a)

Waj(si) exp((wi - W(si, di)) — (Wi - W(s,a:)))
(«

1+ exp({wWi - U(si,di)) — (Wi - ¥(s,a:)))

_ Uaj(si)
=2 L+ exp({wy - U(si,a;)) — (Wi - U(s,d;)))

i

Ikt1(J)

The new cost function is thew ;| = wi —ad,1 Where
« is a step size parameter. We can then choose aarfew
each training example and recompute the gradient to get an
iteratively better estimate af. Once the iterations are com-
plete, and we have a final weight vecter;, we have suc-
cessfully constructed the functighfrom the problem for-
mulation above:

f(s) = argmax(wy - U(s,a))
a€A

()

(@) An example of poor base cohesion.

(b) An example of good base cohesion.

Figure 1: Examples of floor plans in the Wargus domain.

Empirical Evaluation

We perform our experiments in th&argus floor planning
domain described below. Our general approach is to design
several, not necessarily linear, objective functionsis do-
main and attempt to learn them using the method described
above. We show that learning a linear function in several

simple features is sufficient to approximate the behavior of e

these more complex objectives, even where many of the fea-
tures given are irrelevant.

The Wargus Floor Planning Domain

Wargus is a real-time strategy game simulating medieval
warfare. A subproblem in Wargus is the planning of a mil-
itary base whereby the layout of the buildings maximizes
certain quantitative objectives. In general, the goalstare
maximize the influx of resources and to survive any incom-
ing attack. Figure 1 shows some examples.

More specifically, we consider a simplified version of
Wargus in which there are two types of natural features on
the map, which is am x n grid. The first is a gold mine,

and the second is a forested area. On each generated map,

there is one randomly placed mine and four randomly placed
forested areas. Our goal is to place four buildings on the
map so that our objective quantities given below are opti-
mized. These buildings are a town hall, a lumber mill, and
two guard towers. The town hall is a storage building for

towerx and zero otherwise. If the battle front of a given
map is composed of squares . . ., g.,, then the defen-
sive qualityd of a map with two towers is

Z?;l 31 (gm) + t2(9m)
2m

d= (8)
Base Cohesion:lt is beneficial to locate buildings close

to one another. This makes the base easier to defend
from attack. Formally, if the locations of the buildings are
b1, ..., by then the cohesion qualityis computed as

i Z?:H—l 2n — [[b; = bjll1
12n ' ®)

The factor2n is the maximum distance possible between
any two entities on the map.

e Resource Gathering: The lumber mill should be located

to minimize the average distance between itself and the
various forested areas, and the town hall should be located
as closely as possible to the mine. Formally, suppose the
town hall is att, the gold mine ain, the lumber mill at

1, and the four forested areasagt . .., a,. The resource
gathering quality- of the base is then:

Lyl | 20—|je—gll
8n 2n

2

(10)

T =

mined gold. The lumber mill serves the same function for Domain Specifics

‘r::ctﬁluusmbg\'li-g&e g)ggr?s:sf?o??ri Loa;';e cannon in a given et note that in this domain, an entire plan, from startrie fi
P g oS ish, consists of a single, factored action (the placemeali of
We postulate three such quantitative objectives based on buildings). Thus, we are in a special case of general MDPs

:ane; (x(epggliﬂfgcéio;uam%\éfgerrt:sge%nzdega;ne dmoenn; :; gun'qlg:a _vvhi'ch allows us to unify reward function and disg:riminant
sure’ of how well each of these goals are satisfied action-value function. However, our approach directly ap-
' plies to general MDPs where we can design a feature space
e Defensive Structure: In the case where there is a clear that allows a linear discriminant function to nearly optima
part of the map from which an attack might originate, as and suboptimal actions in any relevant states.
much of this area as possible should be covered by the Our experiments are done ori@ x 10 grid. Thus, there
attack area of the guard towers. Formally, suppose that are tens of millions of possible plans to consider for a given
t.(g) returns 1 if grid square within the attack radius of map. To generate a negative example for each iteration of

0.85 0.85 ¢

—
08 1 08
0.75
0.75
> 07t S
g g 0.7
3 0651 & : Boosted Model
s s = Optimal Model
= 0.6 =S 065 Random Model
© ©
? 055 b
Boosted Model 06 1
05 = Optimal Model
Random Model
045 0.55
0.4 ‘ ‘ ‘ s ‘ | 05 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
(@) a=0.33,3=0.33,v =0.33 0)a=0,3=05,v=05
09 1k
0.85 09 |
08 08 |
0.75
> > 07F
® 0.7 K]
5 5 o6
c 0.65 c
S S o5t Boosted Model
= 0.6 2 = Optimal Model
[=3 Boosted Model =3
KN —— Optimal Model D04t Random Model
S5 Random Model
05 . 03 g
045 [7 T T SR 02|
0.4 ‘ ‘ ‘ ‘ ‘ ; 0.1 s ‘ s ‘ ‘ ‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
©)a=05,83=0v=05 da=1,6=0vy=0

Figure 2: Boosting curves for two objective functions in Y¥Wargus floor planning domain. The training set contains 1psna

the algorithm (thed; of Equation 2), we generate 10000 Experimental Results

random plans and choose the best one according to the cur-n Figure 2 we see the results of boosting a random model
rent model. The plans are pre-screened so that they are validfor 30 iterations according to our algorithm. We evaluate
placements (i.e., so that multiple buildings are not lotate the model at each iteration on 20 different random maps by
on the same grid square). choosing for each map, according to the model, the best in

Given this, note that it is impossible to receive a perfect arandom sample of 10000 plans. The chosen plans are then
qua”ty score of one on all of these measures. For examp|e, evaluated a}ccordlng to the optlmal mo_del. As th.e iterations
to achieve perfect quality on the resource gathering measur Of the algorithm progress along the horizontal axis, thé-qua
the lumber mill would have to be located on the same grid ity of the plan chosen by the model increases, as expected.

square as all of the forested areas, which would also have to For reference, we plot the performance of the optimal
be located on the same grid square. model as well as the performance of a linear model with its

weights randomly initialized, evaluated in the same way as
the boosted model. Note that the score of the optimal model
varies due to the fact that first, the optimal score of a map
varies from map to map, and second, the optimal plan may
not be in the random sample. As can be seen from the plots
in Figure 2, however, much of this variability is removed as
our experiments are repeated and averaged over ten trials.
We first note that, in every case, the boosted function is
able to learn a floor planning algorithm that is closer to op-
timal than random. This is true in particular for Figure 2(b)
To generate several objective functions in this domain, we where the performance of the model converges to perfor-
compute the total quality = ad + Sec + yr. We then vary mance extremely close to the optimal. This is because the
«, (3, and~ to obtain a variety of functions. cohesion and resource gathering quality measures aretalmos

The features in the model are of two types. First, there is
a feature for the Manhattan distance between each building
and each other entity on the map, resultingtin 9 = 36
features. We also give features for the distance from each
building on the map to the closest battle front square, which
results in four more features, for a total4if features. Note
that many of these features (the distance from either tawer t
any of the forested areas, for example) are irrelevant to pla
quality.

0.85

08

0.75 |

0.7

0.65

Boosted Model
= Optimal Model
Random Model

06

Solution Quality
Solution Quality

0.55

05

0.45 [

0.4)
8 10 12 14 16 18 20
Training Examples

(@) o =0.33,3=0.33,y = 0.33

0 2 4 6

0.85 ¢

0.8

0.75

0.7

0.65

Boosted Model
= Optimal Model
Random Model

0.6

0.55

05 i .)
8 10 12 14 16 18 20
Training Examples

(b)) a=0,6=0.5,v=0.5

4 6

Figure 3: Learning curves for two objective functions in ¥Wargus floor planning domain.

directly expressible as linear functions of the given fesgu

room for improvement in the inference portion of the algo-

The defense measure is not readily expressible as a linearrithm. As stated before, a best plan is chosen by drawing
function. However, we see in Figure 2(d) that we are even randomly from the space of possible plans and choosing the
able to learn a reasonable model when the defense measuréest one. This is both highly inefficient and unreliable: De-
is the only component of the objective. Finally, in 2(a), we pending on the domain, we may have to evaluate thousands
see that that model performs admirably when it is forced or millions of plans before coming across a reasonable one,
to trade off all of the various components of the objective and even then there is no guarantee of quality. This not only

against one another.

Figure 3 shows learning curves for two of the objec-
tive functions from Figure 2. The number of training maps
is plotted along the horizontal axis. Again, as expected,
more training examples improves performance. We see that,
again, we are able to learn more quickly when the defense
measure is removed from the objective. More important to
note, however, is the scale of the horizontal axis. For both
objective functions, we are able to learn good models with
only 10 to 15 training traces, even in the presence of many
irrelevant features.

Conclusion and Future Work

makes inference unreliable, but has a detrimental effect on

learning, as the inference algorithm rebuilds the trairsieg

at each iteration. A better inference routine may improee th

quality of learning and will certainly make it more efficient
Finally, it is possible that other methods of structured pre

diction can be specialized for learning via demonstration.

Given the close relationship of gradient boosting (Parker,

Fern, & Tadepalli 2006) to SVM-Struct (Tsochantaridis

al. 2004), we feel that SVM-Struct is a likely candidate.

Acknowledgments

The authors gratefully acknowledge the Defense Advanced

Research Projects Agency under DARPA contract FA8650-

stration that leverages the structured prediction teakesq
currently under investigation in the literature. We uses¢éhe
techniques to discriminatively learn the best action to per
form in a given world state even when there are an exponen-
tial number of states and actions. We have demonstrated the
effectiveness of this techniques in the Wargus floor plagnin
domain. Specifically, we have shown that this approach is
able to learn to satisfy a variety of objective functionshwit
only a small number training examples, even in the presence
of irrelevant features.

An important future challenge is to relate this work to
other discriminative reinforcement learning techniqueshs
as inverse reinforcement learning (Ng & Russell 2000) and
max-margin planning (Ratliff, Bagnell, & Zinkevich 2006).

tion under grant 11S-0329278.

References

Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learn-
ing via inverse reinforcement learning. IGML '04: Pro-
ceedings of the 21st International Conference on Machine
Learning 1. New York, NY, USA: ACM Press.

Dietterich, T. G.; Ashenfelter, A.; and Bulatov, Y. 2004.
Training conditional random fields via gradient tree boost-
ing. InInternational Conference on Machine Learning
Friedman, J.; Hastie, T.; and Tibshirani, R. 2000. Additive
logistic regression: a statistical view of boostidgnals of
Statistics28(2):337-407.

We suspect that these three approaches have a great deal in Khardon, R. 1999. Learning action strategies for planning

common mathematically, and we would like to establish ex-
actly what these similarities are.
Turning to the particulars of our work, there is certainly

domains.Atrtificial Intelligencel13(1-2):125-148.

Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. IICML 'OO: Proceedings of the

17th International Conference on Machine Learni6§3—
670.

Parker, C.; Fern, A.; and Tadepalli, P. 2006. Gradient
boosting for sequence alignment. ARMAI '06: Proceed-
ings of the 21st National Conference on Atrtificial Intelli-
gence (AAAI-06)

Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. A. 2006.
Maximum margin planning. IhCML '06: Proceedings of
the 23rd International Conference on Machine Learning
729-736.

Taskar, B. 2004 Learning Structured Prediction Models:
A Large Margin Approach Ph.D. Dissertation, Stanford
University.

Tsochantaridis, I.; Hofmann, T.; Joachims, T.; and Altun,
Y. 2004. Support vector machine learning for interdepen-
dent and structured output spaces.Piioc. 21st Interna-
tional Conference on Machine Learning

