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Abstract

With the growing popularity of video sharing web
sites and the increasing use of consumer-level video
capture devices, new algorithms are needed for intel-
ligent searching and indexing of such data. The audio
from these video streams is particularly challenging due
to its low quality and high variability. Here, we perform
a broad empirical study of features used for intelligent
audio processing. We perform experiments on a dataset
of 200 consumer videos over which we attempt to detect
10 semantic audio concepts.

1 Introduction

In recent years, the increased availability of low-cost
video capture devices has resulted in a massive influx
of audio and video data. A challenge for the pattern
recognition community is to develop intelligent algo-
rithms for indexing and searching this data. As such, it
is increasingly important to glean information from the
audio stream of consumer-end recording devices, here-
after referred to as “consumer audio”.

While there has obviously been a great deal of work
around speech recognition and music processing, in this
work, we will focus on the more general problem of se-
mantic audio classification. That is, we assign semantic
labels to recorded audio? Even within this space there
has been a fair amount of work in classifying speech vs.
non-speech [15, 6], sounds from broadcast audio [5, 2]
and music genre identification [12, 8].

Central to nearly all methods of audio classification
is the problem of feature extraction. That is, given an
audio signal, what is the best way to pre-process this
signal so that semantic concepts are highly detectable?
The current literature provides a variety of methods for
feature extraction, but very few empirical comparisons.

It is this task that we will undertake in this paper.
Specifically, we engage here in a broad evaluation of
“off-the-shelf” feature extraction methods on a compre-

hensive consumer audio dataset over a large number of
audio classes. We believe such an examination is both
useful and novel to the literature. We also provide some
indication of the difficulty of detecting certain concepts
in consumer audio streams.

2 Preliminaries

The problem of audio frame classification can be
specified as a tuple {W, C, Y }, where W is a set of k
short clips or frames of audio, C is a set of n audio con-
cepts, and Y is a binary matrix. The matrix Y is size
k× n, and the entry Yi,j is 1 if audio concept cj ∈ C is
present in audio frame wi ∈W and 0 otherwise.

The problem, then, is to develop an algorithm that
can predict Yi,j given only wi ∈ W for all j. Rather
than design n algorithms by hand, we opt to train classi-
fiers [10]. To create a classifier for the concept cj ∈ C,
we first pick a feature extraction function, Φ, and then
break W into two sets, WS and WT , creating a train-
ing set T = {(Φ(w)i, Yi,j)} : wi ∈ WT and similarly
a test set S. We then choose a learning algorithm that
will take the training set T as input and output a func-
tion h : w 7→ {0, 1}, which is then our predictor.

3 Feature Extraction Methods

A crucial choice, then, is the choice of Φ, the fea-
ture extraction function. We hope to choose a method
that uses as few features as possible, but preserves all
information relevant to semantic understanding.

We will consider the following feature extraction
methods, which are representative of the literature:
Spectrogram coeffiencts from the short-time Fourier
transform, gammatone filterbanks [4], MFCC features
[9], mean and variance from wavelet [7] sub-band ener-
gies, and a collection of ad-hoc features representative
of those found in the literature [3]. These methods each
produce between 10 and 50 features for classification.

We use the Matlab signal processing toolbox to ex-
tract wavelet and spectrogram features. For the Gam-



matone and MFCC features, we use implementations
made available by LabROSA1. The ad-hoc features
used are those in [3].

Two other common parameters must be decided:
First, for each the processing methods, we must choose
a frame size. That is, we must choose the length of each
short-time “frame” to be analyzed. In addition, we have
the availability of ∆-features to consider: In certain
work [13, 1], the authors choose not only to represent
each frame as a set of features, but also to represent the
difference in feature values from one frame to the next.
This will double the size of each feature set.

After constructing a training set, using a feature ex-
traction function as defined above, we must then in-
put this training set to a learning algorithm. We use
four learning algorithms for these experiments: Naı̈ve
Bayes, logistic regression, adaboosted decision trees,
and k-nearest neighbor. We use the Weka [14] imple-
mentation for each of these classifiers and use the de-
fault options for all of them.

4 Experiment

Our experiment is designed to test the effectiveness
of the feature extraction processes outlined above. As
such, we use a wide variety of audio concepts for testing
and test many possible feature extraction methods.

4.1 Experimental Data

Our experiments is designed to test the effective-
ness of these techniques in processing consumer au-
dio, and so we gather data from two sources: The first
is an in-house camera handout conducted by the East-
man Kodak Company. The second is the popular online
video sharing site YouTube. Our dataset consists of 203
videos with an average length of 40 seconds. All videos
are consumer-captured, and the audio quality is highly
variable.

Each of these videos was hand-labeled for 10 dif-
ferent audio concepts, listed in Table 1 along with the
fraction of audio frames in the dataset labeled with that
concept. All or any part of a file may take one or more of
the labels. Durations as small as 0.1 seconds may take
on a label different from the surrounding audio, and the
labels may overlap in time.

For each experiment, the data is broken into a train-
ing set and a test set (with half of the videos in each
set) on a “per-clip” basis. That is, there is never a case
where different parts of the same video appear in both
sets.

1http://labrosa.ee.columbia.edu/

Concept Frequency 90th %-ile f1 Ratio
applause 0.024 15.71
baby 0.018 11.78
crowd 0.149 1.78
laughter 0.009 2.72
music 0.131 2.01
parade-drums 0.042 3.21
singing 0.029 3.31
speech 0.150 1.97
water 0.101 3.36
wind 0.024 5.96

Table 1. 90th percentile f1 ratio and fre-
quency of occurrence for each concept.

4.2 Experimental Procedure

For each experiment, we choose a feature extraction
method (described above), a frame size (25, 100 or 250
ms), whether or not to use ∆-features, a learning al-
gorithm, and an audio concept. With these parameter
choices decided, we split the videos into training and
test sets and sample 5000 frames from the training set,
labeling each one with the presence or absence of the
chosen audio concept. We train a classifier on this set
using the chosen learning algorithm, then sample 5000
frames from the test set for testing. We measure success
using the ratio of the classifier f1 score to the f1 score
of a random classifier.

Because we wish to make general statements about
our parameter choices, we perform the experiment
40 times for every possible combination of parameter
choices, resulting in 60,000 total experiments.

5 Results and Conclusions

In the results that follow, for each choice of frame
size, feature extraction method, ∆-features, and audio
concept, we choose the classifier that performed the best
of the four we tested. We use this as a proxy for engi-
neering and parameter tuning for each individual con-
cept.

We first present Table 1 showing the 90th percentile
f1 ratio for each of the audio concepts under test. More
formally, suppose that, for some parameter choice p,
and some concept c, the f1 ratio achieved by those pa-
rameters on that concept is f(c,p). We report, then, for
each c:

min
p

f(c,p) + 0.9(max
p

f(c,p)−min
p

f(c,p))



Features 25ms 100ms 250ms
MFCC 46.6 58.9 62.1
MFCC∆ 56.7 73.2 70.0
Wavelet 47.5 53.1 55.8
Wavelet∆ 48.5 53.8 59.8
Gammatone 48.7 52.8 56.8
Gammatone∆ 52.7 55.8 57.2
S-gram 49.1 52.2 54.4
S-gram∆ 50.6 55.1 58.6
Ad-hoc 31.6 33.9 35.8
Ad-hoc∆ 36.7 46.6 46.2

Table 2. Average percentile rank over all
concepts for various parameter choices.
∆ indicates the addtion of ∆-features.

This gives us an idea of the difficulty of detecting cer-
tain audio concepts using off-the-shelf methods, assum-
ing one makes good parameter choices.

It is difficult to compare concepts of vastly differing
frequencies (due to the relatively much better perfor-
mance of the random classifier on these concepts), but
among the more common concepts (music, speech, and
crowd noise), it appears that crowd noise is the most
difficult to detect, while speech and music are some-
what easier. Among the less common concepts (all oth-
ers), some methods do an impressive job classifying ap-
plause, baby noises, and, to a lesser extent, wind. Other
concepts appear more difficult to classify reliably.

We also summarize the average performance of each
combination over all concepts in Table 2. Here we
report the average percentile rank for each combina-
tion over all concepts. That is, if we have n concepts
c1 . . . cn, and a set of m possible permutations of pa-
rameters P = {p1 . . .pm}, then we report, for each
parameter choice pt:∑n

i
f(ci,pt)

maxpm∈Pf(pm,ci)−1

n

We do this because the variance of f1 ratios is so wide
that certain concepts (baby, applause) dominate a sim-
ple average. This gives us a broader view of the perfor-
mances of each combination.

As we can see the MFCC-based feature sets do very
well in the comparison. It is also seems clear that the
ad-hoc-based features do not do as well. Further, it ap-
pears that ∆-features do indeed help classification, and
that the larger frame sizes outperform the smaller.

To evaluate the statistical relevance of these obser-
vations, we will perform Wilcoxon signed-rank tests.
We have 300 combinations of parameter choices (frame

Test p-value
∆ vs. no ∆ p < 0.05∗

25ms frame vs. 100ms frame p < 0.00001∗

25ms frame vs. 250ms frame p < 0.00001∗

100ms frame vs. 250ms frame p > 0.05
MFCC vs. Gammatone p > 0.05
MFCC vs. Wavelets p > 0.05
MFCC vs. S-gram p < 0.05∗

MFCC vs. ad-hoc p < 0.00001∗

Table 3. Results of statistical tests for sev-
eral parameter choices. A ∗ indicates sig-
nificance.

size, feature extraction method, ∆-features, and con-
cepts), each with an associated f1 ratio. We will split
these ratios into groups for our tests.

The first split is ∆-features vs. no ∆-features, giving
us two sets with 150 samples each. We perform a paired
test, pairing parameter choices where the presence of
∆-features is the only difference. We do the same with
the three frame sizes, performing tests for each choice
of two sizes. Finally, we do the same for the six choices
of feature extraction method, performing paired tests of
the top choice (MFCC features) against all others.

We show the results in Table 3. We see that the use
of ∆- features produces an improvement, as does using
one of the larger frame sizes over the smaller one. In ad-
dition, MFCC features are not significantly better than
wavelet features or gammatone filters but are, however,
statistically better than the raw spectrogram and the ad-
hoc features.
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0

2

4

6

8

10

12

14

16

18

P
e
rc

e
n
t 
Im

p
ro

v
e
m

e
n
t

 

 

Mean

Median

Figure 1. Mean and median improvement
due to “correct” parameter choice.



Algorithm # times best
Naı̈ve Bayes 200
Logistic Regression 7
k-nearest neighbor 90
Adaboost (decision trees) 4

Table 4. Number of times each learning al-
gorithm outperformed all others.

In Figure 1, we show the mean and median improve-
ment in f1 ratio associated with each “correct” choice
of parameter. We define “correct” choices as MFCC,
Gammatone, or wavelet feature extraction functions, a
100ms or 250ms frame size, and using ∆ features. In-
correct choices are all others. We then compute the
mean and median differences for each choice. Choos-
ing the correct feature extraction method is most im-
portant, followed by the correct frame size. The use of
∆-features provides less of a performance boost.

We now consider the learning algorithm perfor-
mances. Table 4 shows the number of tests where each
learning algorithm outperformed the other three.

Naı̈ve Bayes and k-nearest neighbor clearly outper-
form logistic regression and adaboost in general. We
note that the former two algorithms regard all dimen-
sions in the feature space equally, while the latter two
minimize the influence of less useful dimensions, appar-
ently without success. This may provide some insight
as to the usefulness of other classification paradigms on
audio signals.

The omission of support vector machines from our
list of classifiers is notable, as they are so common in
the literature [2, 1]. We found that SVMs in this setting
suffered from having unbalanced training data, and pa-
rameter tuning had little effect. Though further tuning
may have improved them, we were attempting to tune
the classifiers as little as possible, and decided to leave
SVMs out of these experiments. In addition, we feel
that adaboost represents a reasonable substitute [11].

6 Future Work

An obvious direction for future work is to extend
the classification from frames to larger chunks of au-
dio. Often, frames are classified in combination with
other adjacent frames, requiring us to choose an aggre-
gation method. This can be anything from averaging
feature values, to more sophisticated clustering tech-
niques. This work serves as a starting point for that
more detailed examination.
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